Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Jian-Xin Pan, Guo-Yu Yang* and Yan-Qiong Sun

Coordination and Hydrothermal Chemistry Group, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: ygy@ms.fjirsm.ac.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.043$
$w R$ factor $=0.112$
Data-to-parameter ratio $=11.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

# Piperazinium hexaaquacobalt(II) disulfate 

The crystal structure of the title compound, $\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)$ [Co$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{2}$, is built of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, diprotonated piperazinium cations (each of the two crystallographically independent piperazinium cations occupies a special position on an inversion centre) and sulfate anions. The Co atom is coordinated by six water molecules in a slightly distorted octahedral geometry. The cations are linked to anions by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming an extensive three-dimensional hydrogen-bond network in the crystal structure.

## Comment

Intermolecular interactions, such as hydrogen bonds or aromatic $\pi-\pi$ stacking, play a dominant role in molecular recognition in nature, and in the design of molecular aggregates (Juan et al., 2002). One of the important aspects of cobalt sulfate hydrate structures is the existence of extensive hydrogen-bonding interactions. Hitherto, a series of such compounds has been reported in the literature, e.g. $\mathrm{CoSO}_{4} \cdot 7 \mathrm{D}_{2} \mathrm{O}$ (Olovsson et al., 1991), $\mathrm{CoSO}_{4} \cdot 4 \mathrm{D}_{2} \mathrm{O}$ (Kellersohn, 1992) and $\mathrm{CoSO}_{4} \cdot 6 \mathrm{D}_{2} \mathrm{O}$ (Kellersohn et al., 1993). In the course of our studies of transition metal borophosphates, we tried to prepare a novel cobalt borophosphate containing piperazine as a template. Unfortunately, the borophosphate salt was not isolated; instead, single crystals of the title double salt, (I), were obtained.


The crystal structure of (I) consists of discrete $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cations, diprotonated piperazinium cations and sulfate anions. All crystallographically independent chemical residues in the crystal of the title compound are shown in Fig. 1. Within the $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ cation, the Co atom is coordinated by six water molecules at the vertices of a slightly distorted octahedron. The $\mathrm{Co}-\mathrm{O}$ bond lengths range from 2.052 (4) to 2.124 (3) $\AA$ and the $\mathrm{O}-\mathrm{Co}-\mathrm{O}$ bond angles span the ranges 84.7-93.8 and 177.3-178.8 ${ }^{\circ}$.

The anions and cations in the crystal are linked via $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into an extensive three-dimensional infinite framework. Each cation acts as a donor of hydrogen bonds and each anion acts as an acceptor. A packing diagram of the title compound, showing the hydrogen-bonding framework, is presented in Fig. 2. Inter-

Received 14 March 2003
Accepted 14 April 2003
Online 30 April 2003


Figure 1
The cations and anions in the structure of the title compound, with the atom-numbering scheme and displacement ellipsoids shown at the $50 \%$ probability level [symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1-x, 2-y$, $1-z]$.


Figure 2
A packing diagram, viewed down the $c$ axis of the unit cell, showing N $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
molecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds lengths are in the ranges 2.720 (5)-3.239 (5) and 2.689 (5)3.049 (6) Å, respectively.

## Experimental

The title compound was prepared by hydrothermal synthesis from a mixture of $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.562 \mathrm{~g}, 2 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{BO}_{3}(0.124 \mathrm{~g}, 2 \mathrm{mmol})$,
piperazine ( $0.172 \mathrm{~g}, 2 \mathrm{mmol}$ ), $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(0.27 \mathrm{ml}, 4 \mathrm{mmol})$ and $37 \%$ $\mathrm{HCl}(1 \mathrm{ml})$ in $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$. The mixture was sealed in a Teflon autoclave, heated at 438 K for 5 d , and cooled. After filtration, the red filtrate was allowed to stand in air for 2 d , whereupon red crystals were obtained.

## Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{SO}_{4}\right)_{2}$
$M_{r}=447.30$
Monoclinic, $P 2_{1 /} / n$
$a=12.8796$ (6) $\AA$
$b=10.6984$ (6) $\AA$
$c=13.3098$ (7) $\AA$
$\beta=114.118$ (2) ${ }^{\circ}$
$V=1673.88(15) \AA^{3}$
$Z=4$

Data collection
Siemens SMART CCD
diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.639, T_{\text {max }}=0.724$
5044 measured reflections

## $D_{x}=1.775 \mathrm{Mg} \mathrm{m}^{-3}$ <br> Mo $K \alpha$ radiation

Cell parameters from 68 reflections
$\theta=1.8-25.1^{\circ}$
$\mu=1.34 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Polyhedron, red
$0.34 \times 0.26 \times 0.24 \mathrm{~mm}$

2914 independent reflections
2163 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-6 \rightarrow 15$
$k=-8 \rightarrow 12$
$l=-15 \rightarrow 12$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.112$
$S=1.07$
2914 reflections
256 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0415 P)^{2}\right. \\
& +3.1275 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.51 \mathrm{e}^{-3}
\end{aligned}
$$

## Table 1

Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

| Co-O1W | 2.057 (4) | S2-O5 | 1.449 (3) |
| :---: | :---: | :---: | :---: |
| Co-O2W | 2.087 (4) | S2-O6 | 1.472 (3) |
| Co-O3W | 2.124 (3) | S2-O7 | 1.458 (3) |
| Co-O4W | 2.052 (4) | S2-O8 | 1.463 (3) |
| Co-O5W | 2.105 (4) | N1-C3 | 1.486 (5) |
| Co-O6W | 2.085 (3) | N1-C4 | 1.481 (6) |
| S1-O1 | 1.451 (3) | N2-C1 | 1.477 (6) |
| S1-O2 | 1.473 (3) | N2-C2 | 1.472 (6) |
| S1-O3 | 1.467 (3) | C1-C2 ${ }^{\text {i }}$ | 1.494 (6) |
| S1-O4 | 1.463 (3) | $\mathrm{C} 3-\mathrm{C} 4^{\text {ii }}$ | 1.509 (6) |
| $\mathrm{O} 1 W-\mathrm{Co}-\mathrm{O} 2 W$ | 84.7 (2) | O1-S1-O4 | 110.3 (2) |
| $\mathrm{O} 1 W-\mathrm{Co}-\mathrm{O} 3 W$ | 177.5 (2) | $\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$ | 107.4 (2) |
| $\mathrm{O} 1 W-\mathrm{Co}-\mathrm{O} 5 W$ | 92.9 (2) | O4-S1-O2 | 108.0 (2) |
| $\mathrm{O} 1 W-\mathrm{Co}-\mathrm{O} 6 W$ | 93.4 (2) | O4-S1-O3 | 111.1 (2) |
| $\mathrm{O} 2 W-\mathrm{Co}-\mathrm{O} 3 W$ | 93.2 (2) | O5-S2-O6 | 111.4 (2) |
| $\mathrm{O} 2 W-\mathrm{Co}-\mathrm{O} 5 W$ | 177.3 (2) | O5-S2-O7 | 110.4 (3) |
| $\mathrm{O} 4 W-\mathrm{Co}-\mathrm{O} 1 W$ | 87.6 (2) | O5-S2-O8 | 108.5 (2) |
| $\mathrm{O} 4 W-\mathrm{Co}-\mathrm{O} 2 W$ | 93.2 (2) | O7-S2-O6 | 107.4 (2) |
| $\mathrm{O} 4 W-\mathrm{Co}-\mathrm{O} 3 W$ | 93.8 (2) | O7-S2-O8 | 109.0 (2) |
| $\mathrm{O} 4 W-\mathrm{Co}-\mathrm{O} 5 W$ | 87.9 (2) | O8-S2-O6 | 110.1 (2) |
| $\mathrm{O} 4 W-\mathrm{Co}-\mathrm{O} 6 W$ | 178.8 (2) | $\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3$ | 111.8 (3) |
| $\mathrm{O} 5 W-\mathrm{Co}-\mathrm{O} 3 W$ | 89.3 (2) | $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 1$ | 112.3 (4) |
| $\mathrm{O} 6 W-\mathrm{Co}-\mathrm{O} 2 W$ | 86.1 (2) | $\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$ | 110.1 (4) |
| $\mathrm{O} 6 W-\mathrm{Co}-\mathrm{O} 3 W$ | 85.2 (2) | $\mathrm{N} 2-\mathrm{C} 2-\mathrm{Cl}^{\text {i }}$ | 110.5 (4) |
| $\mathrm{O} 6 W-\mathrm{Co}-\mathrm{O} 5 W$ | 92.8 (2) | $\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4^{\text {ii }}$ | 111.0 (4) |
| O1-S1-O2 | 109.3 (2) | $\mathrm{N} 1-\mathrm{C} 4-\mathrm{C3}^{\text {ii }}$ | 110.4 (3) |
| O1-S1-O3 | 110.6 (2) |  |  |

[^0]Table 2
Hydrogen-bonding geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2{ }^{\text {iii }}$ | 0.90 | 1.89 | 2.768 (5) | 163 |
| N1-H1B ..O6 | 0.90 | 2.53 | 3.239 (5) | 136 |
| $\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 7$ | 0.90 | 1.92 | 2.741 (5) | 151 |
| $\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 2^{\text {iii }}$ | 0.90 | 1.84 | 2.733 (4) | 171 |
| $\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 8^{\text {iv }}$ | 0.90 | 1.83 | 2.720 (5) | 170 |
| $\mathrm{O} 1 W-\mathrm{H} 11 \cdots \mathrm{O}^{v}$ | 0.83 (6) | 1.87 (7) | 2.698 (5) | 169 (6) |
| $\mathrm{O} 1 W-\mathrm{H} 12 \cdots \mathrm{O} 8^{\text {vi }}$ | 0.73 (5) | 2.01 (5) | 2.716 (5) | 166 (6) |
| $\mathrm{O} 2 W-\mathrm{H} 21 \cdots \mathrm{O} 4$ | 0.81 (6) | 1.95 (7) | 2.742 (5) | 164 (6) |
| $\mathrm{O} 2 W-\mathrm{H} 22 \cdots \mathrm{O} 7^{\text {vii }}$ | 0.83 (5) | 1.87 (6) | 2.689 (5) | 168 (5) |
| $\mathrm{O} 3 W-\mathrm{H} 31 \cdots \mathrm{O} 3^{\text {iii }}$ | 0.88 (8) | 1.94 (9) | 2.808 (5) | 171 (7) |
| $\mathrm{O} 3 W-\mathrm{H} 32 \cdots \mathrm{O}{ }^{\text {vii }}$ | 0.70 (6) | 2.41 (6) | 3.049 (6) | 152 (6) |
| $\mathrm{O} 4 W-\mathrm{H} 41 \cdots \mathrm{O} 4^{\text {iii }}$ | 0.76 (6) | 1.95 (6) | 2.715 (5) | 176 (6) |
| $\mathrm{O} 4 W-\mathrm{H} 42 \cdots \mathrm{O} 1$ | 0.77 (6) | 1.95 (6) | 2.710 (5) | 174 (6) |
| $\mathrm{O} 5 W-\mathrm{H} 51 \cdots \mathrm{O}^{v}$ | 0.79 (6) | 2.11 (6) | 2.888 (5) | 173 (7) |
| O5W-H52 . O6 | 0.77 (6) | 1.96 (6) | 2.726 (5) | 172 (6) |
| $\mathrm{O} 6 W-\mathrm{H} 61 \cdots \mathrm{O}^{\text {vi }}$ | 0.69 (6) | 2.08 (6) | 2.760 (5) | 170 (6) |
| O6W-H62 . O 5 | 0.81 (6) | 1.91 (6) | 2.719 (5) | 174 (5) |

Symmetry codes: (iii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (v) $1-x, 1-y,-z$; (vi) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (vii) $1-x, 1-y, 1-z$.

The aqua H atoms were located in a difference Fourier map and their positions and isotropic displacement parameters were refined. H atoms bonded to C and N atoms were positioned geometrically (the $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bonds were fixed at 0.97 and $0.90 \AA$, respectively) and allowed to ride on their parent atoms.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by the National Science Found ation of China (grant Nos. 20271050 and 20171045), the Ministry of Finance of China and the Talents Program of the Chinese Academy of Sciences.

## References

Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Juan, C. N., Myoung, S. L., Rico, E. D. A., Atta, M. A., Ioel, S. M. \& Peter, J. S. (2002). J. Am. Chem. Soc. 124, 6613-6625.

Kellersohn, T. (1992). Acta Cryst. C48, 776-779.
Kellersohn, T., Delaplane, R. G., Olovsson, I. \& Mcintyre, G. J. (1993). Acta Cryst. B49, 179-192.
Olovsson, I., Kellersohn, T. \& Delaplane, R. G. (1991). Z. Naturforsch. Teil B, 46, 1635-1640.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany
Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.


[^0]:    Symmetry codes: (i) $1-x, 2-y,-z$; (ii) $1-x, 2-y, 1-z$.

